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Auditory neurons preserve exquisite temporal information about
sound features, but we do not know how the brain uses this
information to process the rapidly changing sounds of the natural
world. Simple arguments for effective use of temporal information
led us to consider the reassignment class of time-frequency rep-
resentations as a model of auditory processing. Reassigned time-
frequency representations can track isolated simple signals with
accuracy unlimited by the time-frequency uncertainty principle,
but lack of a general theory has hampered their application to
complex sounds. We describe the reassigned representations for
white noise and show that even spectrally dense signals produce
sparse reassignments: the representation collapses onto a thin set
of lines arranged in a froth-like pattern. Preserving phase infor-
mation allows reconstruction of the original signal. We define a
notion of ‘‘consensus,’’ based on stability of reassignment to
time-scale changes, which produces sharp spectral estimates for a
wide class of complex mixed signals. As the only currently known
class of time-frequency representations that is always ‘‘in focus’’
this methodology has general utility in signal analysis. It may also
help explain the remarkable acuity of auditory perception. Many
details of complex sounds that are virtually undetectable in stan-
dard sonograms are readily perceptible and visible in reassignment.

auditory � reassignment � spectral � spectrograms � uncertainty

T ime-frequency analysis seeks to decompose a one-
dimensional signal along two dimensions, a time axis and a

frequency axis; the best known time-frequency representation is
the musical score, which notates frequency vertically and time
horizontally. These methods are extremely important in fields
ranging from quantum mechanics (1–5) to engineering (6, 7),
animal vocalizations (8, 9), radar (10), sound analysis and speech
recognition (11–13), geophysics (14, 15), shaped laser pulses
(16–18), the physiology of hearing, and musicography.¶ A central
question of auditory theory motivates our study: what algorithms
do the brain use to parse the rapidly changing sounds of the
natural world? Auditory neurons preserve detailed temporal
information about sound features, but we do not know how the
brain uses it to process sound. Although it is accepted that the
auditory system must perform some type of time-frequency
analysis, we do not know which type. The many inequivalent
classes of time-frequency distributions (2, 3, 6) require very
different kinds of computations: linear transforms include the
Gabor transform (19), quadratic transforms [known as Cohen’s
class (2, 6)] include the Wigner–Ville (1) and Choi–Williams (20)
distributions, and higher-order in the signal, include multita-
pered spectral estimates (21–24), the Hilbert–Huang distribution
(25, 26), and the reassigned spectrograms (27–32) whose prop-
erties are the subject of this article.

Results and Discussion
The auditory nerve preserves information about phases of
oscillations much more accurately than information about am-
plitudes, a feature that inspired temporal theories of pitch
perception (33–37). Let us consider what types of computation
would be simple to perform given this information. We shall
idealize the cochlea as splitting a sound signal �(t) into many
component signals �(t,�) indexed by frequency �

��t, �� � �e��t�t��2/2�2ei��t�t��x�t��dt�. [1]

� is the Gabor transform (19) or short-time Fourier transform
(STFT) of the signal x(t). The parameter � is the temporal
resolution or time scale of the transform, and its inverse is the
frequency resolution or bandwidth. The STFT � is a smooth
function of both t and � and is strongly correlated for �t � � or
�� � 1��. In polar coordinates it decomposes into magnitude
and phase, �(t, �) � ���(t, �)ei�(t,�). A plot of ���2 as a function
of (t, �) is called the spectrogram (3, 38), sonogram (8), or
Husimi distribution (2, 4) of the signal x(t). We call �(t, �) the
phase of the STFT; it is well defined for all (t, �) except where
��� � 0. We shall base our representation on �.

We can easily derive two quantities from �: the time derivative
of the phase, called the instantaneous frequency (31), and the
current time minus the frequency derivative of the phase (the
local group delay), the instantaneous time:

�ins��, t� �
��

�t

tins��, t� � t �
��

��
.

[2]

Neural circuitry can compute or estimate these quantities from
the information in the auditory nerve: the time derivative, as the
time interval between action potentials in one given fiber of the
auditory nerve, and the frequency derivative from a time interval
between action potentials in nearby fibers, which are tonotopi-
cally organized (34).

Any neural representation that requires explicit use of � or t is
unnatural, because it entails ‘‘knowing’’ the numerical values of
both the central frequencies of fibers and the current time. Eq. 2
affords a way out: given an estimate of a frequency and one of a
time, one may plot the instantaneous estimates against each other,
making only implicit use of (t, �), namely, as the indices in an
implicit plot. So for every pair (t, �), the pair (tins, �ins) is computed
from Eq. 2, and the two components are plotted against each other
in a plane that we call (abusing notation) the (tins, �ins) plane. More
abstractly, Eq. 2 defines a transformation T

��, t�O¡

T�x	

��ins, tins�. [3]

The transformation is signal-dependent because � has to be
computed from Eq. 1, which depends on the signal x, hence the
subscript {x} on T.
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The transformation given by Eqs. 2 and 3 has optimum
time-frequency localization properties for simple signals (27,
28). The values of the estimates for simple test signals are given
in Table 1.

So for a simple tone of frequency �0, the whole (t, �) plane is
transformed into a single line, (t, �0); similarly, for a ‘‘click,’’
Dirac delta function localized at time t0, the plane is transformed
into the line (t0, �); and for a frequency sweep where the
frequency increases linearly with time as �t, the plane collapses
onto the line �tins � �ins. (The full expression in the frequency
sweep case is given in Appendix.) So for these simple signals the
transformation (t, �)3 (tins, �ins) has a simple interpretation as
a projection to a line that represents the signal. The transfor-
mation’s time-frequency localization properties are optimal,
because these simple signals, independently of their slope, are
represented by lines of zero thickness. Under the STFT the
simple signals above transform into strokes with a Gaussian
profile, with vertical thickness 1�� (tones) and horizontal thick-
ness � (clicks).

These considerations lead to a careful restatement of the
uncertainty principle. In optics it is well known that there is a
difference between precision and resolution. Resolution refers
to the ability to establish that there are two distinct objects at a
certain distance, whereas precision refers to the accuracy with
which a single object can be tracked. The wavelength of light
limits resolution, but not precision. Similarly, the uncertainty
principle limits the ability to separate a sum of signals as distinct
objects, rather than the ability to track a single signal. The
best-known distribution with optimal localization, the Wigner–
Ville distribution (1), achieves optimal localization at the ex-
pense of infinitely long range in both frequency and time.
Because it is bilinear, the Wigner transform of a sum of signals
causes the signals to interfere or beat, no matter how far apart
they are in frequency or time, seriously damaging the resolution
of the transform. This nonlocality makes it unusable in practice
and led to the development of Cohen’s class. In contrast, it is
readily seen from Eq. 1 that the instantaneous time-frequency
reassignment cannot cause a sum of signals to interfere when
they are further apart than a Fourier uncertainty ellipsoid;
therefore, it can resolve signals as long as they are further apart

than the Fourier uncertainty ellipsoid, which is the optimal case.
Thus, reassignment with instantaneous time-frequency esti-
mates has optimal precision (unlimited) and optimal resolution
(strict equality in the uncertainty relation).

We shall now derive the formula needed to implement nu-
merically this method. First, the derivatives of the transforma-
tion defined by Eq. 2 should be carried out analytically. The
Gaussian window in the STFT has a complex analytic structure;
defining z � t�� � i�� we can write the STFT as

G�z� � �e��z�t�/��2/2x�t��dt� � �e����2/2. [4]

So up to the factor e(��)2/2, the STFT is an analytic function of z
(29). Defining

	�t, �� �
1
� ��t� � t�e��t�t��2/2�2 ei��t�t��x� t��dt� , [5]

we obtain in closed form

�ins��, t� � �tIm ln � � � 

1
�

Im
	

�
�� , t�

tins��, t� � t � ��Im ln � � t 
 � Re
	

�
�� , t� .

So the mapping is a quotient of convolutions:

zins � z 
 �	���*, [6]

where � is the complex conjugate. Therefore, computing the
instantaneous time-frequency transformation requires only
twice the numerical effort of an STFT.

Any transformation F: (�, t) 3 (�ins, tins) can be used to
transform a distribution in the (�, t) plane to its corresponding
distribution in the (�ins, tins) plane. If the transformation is
invertible and smooth, the usual case for a coordinate transfor-
mation, this change of coordinates is done by multiplying by the
Jacobian of F the distribution evaluated at the ‘‘old coordinates’’
F�1(�ins, tins). Similarly, the transformation T given by Eqs. 2 and
3 transforms a distribution f in the (�,t) plane to the (�ins, tins)
plane, called a ‘‘reassigned f ’’ (28–30, 38)§. However, because T
is neither invertible nor smooth, the reassignment requires an
integral approach, best visualized as the numerical algorithm
shown in Fig. 1: generate a fine grid in the (t, �) plane, map every
element of this grid to its estimate (tins, �ins), and then create a
two-dimensional histogram of the latter. If we weight the histo-
grammed points by a positive-definite distribution f(t, �), the

Table 1. The values of the estimates for simple test signals

Tones
x � ei�0t

Clicks
x � �(t � t0)

Sweeps
x � ei�t2/2

�ins(�, t) �
��

�t
�0 � �tins

tins(�, t) � t �
��

��
t t0 . . .

Fig. 1. Reassignment. T{x} transforms a fine grid of points in (t, �) space into a set of points in (tins, �ins) space; we histogram these points by counting how many
fall within each element of a grid in (tins, �ins) space. The contribution of each point to the count in a bin may be unweighted, as shown above, or the counting
may be weighted by a function g(t, �), in which case we say we are computing the reassigned g. The weighting function is typically the sonogram from Eq. 1.
An unweighted count can be viewed as reassigning 1, or more formally, as the reassigned Lebesgue measure. For a given grid size in (tins, �ins) space, as the grid
of points in the original (t, �) space becomes finer, the values in the histogram converge to limiting values.

Gardner and Magnasco PNAS � April 18, 2006 � vol. 103 � no. 16 � 6095

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

BI
O

PH
YS

IC
S



histogram g(tins, �ins) is the reassigned or remapped f; if
the points are unweighted (i.e., f � 1), we have reassigned the
uniform (Lebesgue) measure. We call the class of distributions
so generated the reassignment class. Reassignment has two
essential ingredients: a signal-dependent transformation of the
time-frequency plane, in our case the instantaneous time-
frequency mapping defined by Eq. 2, and the distribution being
reassigned. We shall for the moment consider two distributions:
that obtained by reassigning the spectrogram ���2, and that
obtained by reassigning 1, the Lebesgue measure. Later, we shall
extend the notion of reassignment and reassign � itself to obtain
a complex reassigned transform rather than a distribution.

Neurons could implement a calculation homologous to the
method shown in Fig. 1, e.g., by using varying delays (39) and
the ‘‘many-are-equal’’ logical primitive (40), which computes
histograms.

Despite its highly desirable properties, the unwieldy analytical
nature of the reassignment class has prevented its wide use.
Useful signal estimation requires us to know what the transfor-
mation does to both signals and noise. We shall now demonstrate
the usefulness of reassignment by proving some important
results for white noise. Fig. 2 shows the sonogram and reallo-
cated sonogram of a discrete realization of white noise. In the
discrete case, the signal is assumed to repeat periodically, and a
sum replaces the integral in Eq. 1. If the signal has N discrete
values we can compute N frequencies by Fourier transformation,
so the time-frequency plane has N2 ‘‘pixels,’’ which, having been
derived from only N numbers, are correlated (19). Given a
discrete realization of white noise, i.e., a vector with N indepen-
dent Gaussian random numbers, the STFT has exactly N zeros
on the fundamental tile of the (t,�) plane, so, on average, the
area per zero is 1. These zeros are distributed with uniform
density, although they are not independently distributed.

Because the zeros of the STFT are discrete, the spectrogram
is almost everywhere nonzero. In Fig. 2 the reassigned distribu-
tions are mostly zero or near zero: nonzero values concentrate
in a froth-like pattern covering the ridges that separate neigh-
boring zeros of the STFT. The Weierstrass representation
theorem permits us to write the STFT of white noise as a product
over the zeros 
 the exponential of an entire function of
quadratic type:

G�z� � eQ�z� �
i

�1 � z�zi�,

where Q(z) is a quadratic polynomial and zi is the zeros of the
STFT. The phase � � Im ln G and hence the instantaneous
estimates in Eq. 2 become sums of magnetic-like interactions

��

�t
�

�

�t
Im ln G � Im� �

�z
ln G

�z
� t� ,

where

�x ln G � � zQ�Q � �
i

1
zi � z

,

and similarly for the instantaneous time; so the slow manifolds
of the transformation T, where the reassigned representation has
its support, are given by equations representing equilibria of
magnetic-like terms.

The reassigned distributions lie on thin strips between the
zeros, which occupy only a small fraction of the time-frequency
plane; see Appendix for an explicit calculation of the width of the
stripes in a specific case. The fraction of the time-frequency
plane occupied by the support of the distribution decreases as the
sequence becomes longer, as in Fig. 3; therefore, reassigned
distributions are sparse in the time-frequency plane. Sparse
representations are of great interest in neuroscience (41–43),
particularly in auditory areas, because most neurons in the
primary auditory cortex A1 are silent most of the time (44–46).

Signals superposed on noise move the zeros away from the
representation of the pure signal, creating crevices. This process
is shown in Fig. 4. When the signal is strong and readily
detectable, its reassigned representation detaches from the
underlying ‘‘froth’’ of noise; when the signal is weak, the
reassigned representation merges into the froth, and if the signal
is too weak its representation fragments into disconnected
pieces.

Distributions are not explicitly invertible; i.e., they retain
information on features of the original signal, but lose some
information (for instance about phases) irretrievably. It would be
desirable to reassign the full STFT � rather than just its
spectrogram ���2. Also the auditory system preserves accurate
timing information all of the way to primary auditory cortex (47).
We shall now extend the reassignment class to complex-valued
functions; to do this we need to reassign phase information,
which requires more care than reassigning positive values,

Fig. 2. Analysis of a discrete white-noise signal, consisting of N independent identically distributed Gaussian random variables. (Left) ���, represented by false
colors; red and yellow show high values, and black shows zero. The horizontal axis is time and the vertical axis is frequency, as in a musical score. Although the
spectrogram of white noise has a constant expectation value, its value on a specific realization fluctuates as shown here. Note the black dots pockmarking the
figure; the zeros of � determine the local structure of the reassignment transformation. (Center) The reassigned spectrogram concentrates in a thin, froth-like
structure and is zero (black) elsewhere. (Right) A composite picture showing reassigned distributions and their relationship to the zeros of the STFT; the green
channel of the picture shows the reassigned Lebesgue measure, the red channel displays the reassigned sonogram, and the blue channel shows the zeros of the
original STFT. Note that both distributions have similar footprints (resulting in yellow lines), with the reassigned histogram tracking the high-intensity regions
of the sonogram and form a froth- or Voronoi-like pattern surrounding the zeros of the STFT.
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because complex values with rapidly rotating phases can cancel
through destructive interference. We build a complex-valued
histogram where each occurrence of (tins, �ins) is weighted by �(t,
�). We must transform the phases so preimages of (tins, �ins) add
coherently. The expected phase change from (t, �) to (tins, �ins)
is (� � �ins)(tins � t)�2, i.e., the average frequency times the time
difference. This correction is exact for linear frequency sweeps.
Therefore, we reassign � by histogramming (tins, �ins) weighted
by �(t, �)ei(���ins)(tins�t)/2. Unlike standard reassignment, the
weight for complex reassignment depends on both the point of
origin and the destination.

The complex reassigned STFT now shares an important
attribute of � that neither ���2 nor any other positive-definite
distribution possesses: explicit invertibility. This inversion is
not exact and may diverge significantly for spectrally dense
signals. However, we can reconstruct simple signals directly by
integrating on vertical slices, as in Fig. 5, which analyzes a chirp

(a Gaussian-enveloped frequency sweep). Complex reassign-
ment also allows us to define and compute synchrony between
frequency bands: only by using the absolute phases can we

Fig. 3. The complex reassigned representation is sparse. We generated white-noise signals with N samples and computed both their STFFT and its complex
reassigned transform on the N 
 N time-frequency square. The magnitude squared of either transform is its ‘‘energy distribution.’’ (Left) The probability
distribution of the energy for both transforms computed from 1,000 realizations for N � 2,048. The energy distribution of the STFT (blue) agrees exactly with
the expected e�x (see the log-linear plot inset). The energy distribution of the complex reassigned transform (red) is substantially broader, having many more
events that are either very small or very large; we show in gray the power-law x�2 for comparison. For the complex reassigned transform most elements of the
2,048 
 2,048 time-frequency plane are close to zero, whereas a few elements have extremely large values. (Right) Entropy of the energy distribution of both
transforms; this entropy may be interpreted as the natural logarithm of the fraction of the time-frequency plane that the footprint of the distribution covers.
For each N, we analyzed 51 realizations of the signal and displayed them as dots on the graph. The entropy of the STFT remains constant, close to its theoretical
value of 0.42278 as N increases, whereas the entropy of the complex reassigned transform decreases linearly with the logarithm of N. The representation covers
a smaller and smaller fraction of the time-frequency plane as N increases.

Fig. 4. Detection of a signal in a background of noise. Shown are the
reassigned distributions and zeros of the Gabor transform as in Fig. 2 Right.
The signal analyzed here is x � �(t) � Asin�0t, where �(t) is Gaussian white noise
and has been kept the same across the panels. As the signal strength A is
increased, a horizontal line appears at frequency �0. We can readily observe
that the zeros that are far from �0 are unaffected; as A is increased, the zeros
near �0 are repelled and form a crevice whose width increases with A. For
intermediate values of A a zigzagging curve appears in the vicinity of �0. Note
that because the instantaneous time-frequency reassignment is rotationally
invariant in the time-frequency plane, detection of a click or a frequency
sweep operates through the same principles, even though the energy of a
frequency sweep is now spread over a large portion of the spectrum.

Fig. 5. Reconstruction of a chirp from the complex reassigned STFT. (Upper
Left) STFT of a chirp; intensity represents magnitude, and hue represents
complex phase. The spacing between lines of equal phase narrows toward the
upper right, corresponding to the linearly increasing frequency. (Upper Right)
Complex reassigned STFT of the same signal. The width of this representation
is one pixel; the oscillation follows the same pattern. (Lower) A vertical
integral of the STFT (blue) reconstructs the original signal exactly; the vertical
integral of the complex reassigned transform (green) agrees with the original
signal almost exactly. (Note the integral must include the mirror-symmetric,
complex conjugate negative frequencies to reconstruct real signals.) (Lower
Right) Full range of the chirp. (Lower Left) A detail of the rising edge of the
waveform, showing the green and blue curves superposing point by point.
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check whether different components appearing to be harmon-
ics of a single sound are actually synchronous.

We defined the transformation for a single value of the band-
width �. Nothing prevents us from varying this bandwidth or using
many bandwidths simultaneously, and indeed the auditory system
appears to do so, because bandwidth varies across auditory nerve
fibers and is furthermore volume-dependent. Performing reassign-
ment as a function of time, frequency, and bandwidth we obtain a
reassigned wavelet representation, which we shall not cover in this
article. We shall describe a simpler method: using several band-
widths simultaneously and highlighting features that remain the
same as the bandwidth is changed. When we intersect the footprints
of representations for multiple bandwidths we obtain a consensus
only for those features that are stable with respect to the analyzing
bandwidth (31), as in Fig. 6. For spectrally more complex signals,
distinct analyzing bandwidths resolve different portions of the
signal. Yet the lack of predictability in the auditory stream pre-
cludes choosing the right bandwidths in advance. In Fig. 6, the
analysis proceeds through many bandwidths, but only those bands
that are locally optimal for the signal stand out as salient through
consensus. Application of consensus to real sounds is illustrated in
Fig. 7. This principle may also support robust pattern recognition
in the presence of primary auditory sensors whose bandwidths
depend on the intensity of the sound.

A final remark about the use of timing information in the
auditory system is in order. Because G(z) (Eq. 4) is an analytic
function of z, its logarithm is also analytic away from its zeros,
and so

ln G�z� � ln�� � 
 ����2�2 
 i�

satisfies the Cauchy–Riemann relations, from where the deriv-
atives of the spectrogram can be computed in terms of the
derivatives of the phase and vice versa, as shown (29):

�� 2
�

� t
� �

1
�� �

� �� �
��


 � 2� ,
�

��
� � � 2

1
�� �

� �� �
� t

.

So, mathematically, time-frequency analysis can equivalently be
done from phase or intensity information. In the auditory
system, though, these two approaches are far from equivalent:
estimates of ��� and its derivatives must rely on estimating firing
rates in the auditory nerve and require many cycles of the signal
to have any accuracy. As argued before, estimating the deriva-
tives of � only requires computation of intervals between few
spikes.

Our argument that time-frequency computations in hearing
use reassignment or a homologous method depends on a few
simple assumptions: (i) we must use simple operations from

information readily available in the auditory nerve, mostly the
phases of oscillations; (ii) we must make only implicit use of t and
�; (iii) phases themselves are reassigned; and (iv) perception uses
a multiplicity of bandwidths. Assumptions i and ii led us to the
definition of reassignment, iii led us to generalize reassignment
by preserving phase information, and iv led us to define con-
sensus. The result is interesting mathematically because reas-
signment has many desirable properties. Two features of the
resulting representations are pertinent to auditory physiology.
First, our representations make explicit information that is
readily perceived yet is hidden in standard sonograms. We can
perceive detail below the resolution limit imposed by the un-
certainty principle that is stable across bandwidth changes, as in
Fig. 5. Second, the resulting representations are sparse, which is
a prominent feature of auditory responses in primary auditory
cortex.

Appendix: Instantaneous Time Frequency for Some
Specific Signals
Frequency Sweep. x(t) � ei�t2/2:

� � � 2

��2 � i�
exp��

i�2�2 
 � t� t � 2 i�2��

2 i 
 2��2 �

Fig. 6. Consensus finds the best local bandwidth. Analysis of a signal x(t)
composed of a series of harmonic stacks followed by a series of clicks; the
separation between the stacks times the separation between the clicks is near
the uncertainty limit 1�2, so no single � can simultaneously analyze both. If the
analyzing bandwidth is small (Center), the stacks are well resolved from one
another, but the clicks are not. If the bandwidth is large (i.e., the temporal
localization is high, Left), the clicks are resolved but the stacks merge. Using
several bandwidths (Right) resolves both simultaneously.

Fig. 7. Application of this method to real sounds. (Upper) A fragment of
Mozart’s ‘‘Queen of the Night’’ aria (Der Hölle Rache) sung by Cheryl Studer.
(Lower) A detail of zebra-finch song.
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� � �Im
i�2�2 
 � t� t � 2 i�2��

2 i 
 2��2


 Im ln� 2

��2 � i�
�

� t2 
 2�2�4� t � ��4�2

2�1 
 �2�4�
,

from where t ins �
t 
 ��4�

1 
 �2�4 , � ins � � t ins.

Gaussian-Enveloped Tone. x(t) � exp(�(t � t0)2�2�2 � i�0(t �
t0)), then the STFT has support on an ellipsoid centered at (t0,
�0) with temporal width ��2 � �2 and frequency width
���2 � ��2; the total area of the support is (�2 � �2)���,
which is bounded by below by 2 and becomes infinite for either
clicks or tones. The instantaneous estimates are

tins � t0 

�2

�2 
 �2 �t � t0�, �ins � �0 

�2

�2 
 �2 �� � �0�,

from where the two limits, � 3  and � 3 0 give the first two
columns of Table 1, respectively. The support of the reassigned
sonogram has temporal width �2���2 � �2 and frequency width
(���)���2 � �2, so the reassigned representation is tone-like
when � � � (i.e., the representation contracts the frequency axis
more than the time axis) and click-like when � � � (the time
direction is contracted more than the frequency). The area of the
support has become the reciprocal of the STFT’s, ���(�2 � �2),
whose maximum is 1�2 when � � � (i.e., when the signal matches
the analyzing wavelet).
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